
THE STEREOSPECIFIC SYNTHESIS OF VINYLSILANES AND 1-HALOGENO-VINYLSILANES FROM TRIPHENYLSILYLACETYLENE.

H.Westmijze , J.Meijer and P.Vermeer .
(Department of Organic Chemistry of the State University , Croesestraat 79 , Utrecht , The Netherlands)

(Received in UK 22 March 1977; accepted for publication 12 April 1977)

Recently several applications of vinylsilanes as precursors for various carbonyl compounds have been published ¹⁻⁴. The related α -silylated vinylcuprates are very useful acyl anion equivalents and can be applied f.i. in conjugate addition reactions ⁵. Hitherto these vinylic cuprates have been prepared from the corresponding vinyllithium compounds, which can be obtained from the α -bromosilanes by metal halogen exchange (cf⁵). In this paper we wish to report a direct synthesis of α -silylated vinylcuprates starting from the easily available triphenylsilylacetylene (<u>1</u>) and organocuprates [RCuY]Mg(Cl or Br) (2) in the solvent tetrahydrofuran (THF) :

The addition of $\frac{2}{2}$ to $\frac{1}{2}$ occurs exclusively in a cis - manner as can be concluded from the ${}^{3}J(H-H)$ coupling in $\frac{4}{2}$: f.i. ${}^{3}J(H_{1}-H_{2})$ in Ph₃SiCH=CH(<u>t</u>-Bu) amounts 18,9 Hz,

which is characteristic for a trans orientation. The compounds <u>5-8</u> are accessible from reaction of <u>3</u> with N-chlorosuccinimide (NCS)⁶, N-bromosuccinimide (NBS) or cyanogenbromide, iodine and methyl iodide respectively.

A typical procedure is as follows :

To 0.010 mole of the cuprate $\underline{2}$, prepared as described previously 7,8 in 30 ml of dry THF at -50° C - -60° C, a solution of 0.009 mole of $\underline{1}$ in 10 ml of dry THF was added. After stirring during 15 minutes at - 50° C, the temperature was slowly raised to $+20^{\circ}$ C. The reaction with water, cyanogen bromide, <u>N</u>-chloro - or N-bromosuccinimide, iodine or methyliodide was carried out at + 20° C (in THF).

Synthesis of	Ph ₃ Si x C=C from	1 and 2^9 .	(Yields : 80 -95 %)
R		X	m.p.(⁰ C)
Et		н	102 - 103
i-Pr		Н	84 - 85
c-Hexyl		н	52 - 53
<u>t</u> -Bu		Н	80 - 81
Et		Br	79 – 80
Et		I	97 - 98
i-Pr		Me	46 - 48
<u>t</u> -Bu		Cl	85 - 86

REFERENCES

- 1. G.Stork and E.Colvin , J.Amer.Chem.Soc., 93 , 2080 (1971).
- 2. G.Stork and M.E.Jung , J.Amer.Chem.Soc., 96 , 3682 (1974).
- 3. J.P.Pillot, J.Dunogues and R.Calas , Bull.Soc.Chim.France , 1975 , 2143.
- 4. T.H.Chan, M.P.Li , W.Mychajlowski and D.N.Harp , Tetrahedron Lett. , 1974 , 3511.
- 5. R.K.Boeckman and K.J.Bruza , Tetrahedron Lett., 1974 , 3365 .
- α chloro-vinylsilanes have been used as a source for vinylidene carbenes :
 R.F.Cunico and Y.K.Han , J.Organometal.Chem. , 105 , C-29 (1976).
- 7. H.Westmijze, J.Meijer, H.J.T.Bos and P.Vermeer, Recl.Trav.Chim.Pays-Bas , 95 , 229 (1976).
- 8. H.Westmijze, J.Meijer, H.J.T.Bos and P.Vermeer, Recl.Trav.Chim.Pays-Bas, 95, 304 (1976).
- 9. The same results were obtained when a complex of $\underline{2}$ and LiBr was used (cf^{8-9}).